
1

Introducción a la
programación bash - LINUX

Pedro Corcuera
Dpto. Matemática Aplicada y
Ciencias de la Computación
Universidad de Cantabria

corcuerp@unican.es

Linux 2

Índice General

• Scripts Shell
• Examples
• References

Linux 3

Scripts

• In order to automate sets of commands you’ll need to
write shell scripts, the most common of which are
used with bash.

Linux 4

Command Shell choices

• A shell is a command line interpreter which provides the user
interface for terminal windows. It can also be used to run scripts,
even in non-interactive sessions without a terminal window, as if
the commands were being directly typed in.

• Linux provides a wide choice of shells.

https://developer.ibm.com/tutorials/l-linux-shells/

Linux 5

Bash Shell Scripting

• The #!/bin/bash in the first line should be recognized by anyone who
has developed any kind of script in UNIX environments.

• A simple bash script that displays a two-line message on the screen
follow:
$ cat > exscript.sh
#!/bin/bash
echo "HELLO"
echo "WORLD"

• press ENTER and CTRL-D to save the file, or just create exscript.sh in
your favorite text editor. Then, type chmod +x exscript.sh to
make the file executable. To run it by simply typing
./exscript.sh or by doing:
$ bash exscript.sh

HELLO
WORLD

Linux 6

Interactive example using bash Scripts

• The user will be prompted to enter a value, which is then
displayed on the screen. The value is stored in a temporary
variable, sname. We can reference the value of a shell
variable by using a $ in front of the variable name, such as
$sname. The script is saved in file ioscript.sh with the
following content:
#!/bin/bash
Interactive reading of variables
echo "ENTER YOUR NAME"
read sname
Display of variable values
echo $sname

Linux 7

Interactive example using bash Scripts

• make it executable by doing chmod +x ioscript.sh

• to execute the script write ./ioscript.sh is executed,
the user will receive a prompt ENTER YOUR NAME. The
user then needs to enter a value and press the Enter key. The
value will then be printed out.

• Additional note: The hash-tag/pound-sign/number-sign (#) is
used to start comments in the script and can be placed
anywhere in the line (the rest of the line is considered a
comment).

Linux 8

Return Values

• All shell scripts generate a return value upon finishing
execution; the value can be set with the exit statement.
Return values permit a process to monitor the exit state of
another process often in a parent-child relationship. This
helps to determine how this process terminated and take any
appropriate steps necessary, contingent on success or failure.

Linux 9

Viewing Return Values

• As a script executes, one can check for a specific value or
condition and return success or failure as the result. By
convention, success is returned as 0, and failure is returned
as a non-zero value. An easy way to demonstrate success
and failure completion is to execute ls on a file that exists and
one that doesn't, as shown in the following example, where
the return value is stored in the environment variable
represented by $?:
$ ls /etc/passwd
/etc/ passwd
$ echo $?
0

In this example, the system is able to locate the file
/etc/passwd and returns a value of 0 to indicate
success; the return value is always stored in the $?
environment variable.

Linux 10

Basic Syntax and Special Characters

• Scripts require you to follow a standard language syntax.
Rules delineate how to define variables and how to construct
and format allowed statements, etc. The table lists some
special character usages within bash scripts:

Character Description

Used to add a comment, except when used as \#, or as #! when
starting a script.

\ Used at the end of a line to indicate continuation on to the next line
; Used to interpret what follows as a new command
$ Indicates what follows is a variable

Linux 11

Basic Syntax examples

• When # is inserted at the beginning of a line of commentary,
the whole line is ignored.
This line will not get executed

• The concatenation operator (\) is used to concatenate large
commands over several lines in the shell. Example: to copy
the file /var/ftp/pub/userdata/custdata/read from
server1.linux.com to the /opt/oradba/master/abc directory on
server3.linux.co.in write the command using the \ operator as:
scp abc@server1.linux.com:\
/var/ftp/pub/userdata/custdata/read \
abc@server3.linux.co.in:\
/opt/oradba/master/abc/

Linux 12

Basic Syntax examples: Putting Multiple
Commands on a Single Line

• The ; (semicolon) character is used to separate commands
and execute them sequentially as if they had been typed on
separate lines. The three commands in the following example
will all execute even if the ones preceding them fail:
$ make ; make install ; make clean

• To abort subsequent commands if one fails use the && (and)
operator as in:
$ make && make install && make clean

• A final refinement is to use the || (or) operator as in:
$ cat file1 || cat file2 || cat file3

In this case, you proceed until something succeeds and then
you stop executing any further steps.

Linux 13

Functions

• A function is a code block that implements a set of
operations. Functions are useful for executing procedures
multiple times perhaps with varying input variables. Functions
are also often called subroutines. Using functions in scripts
requires two steps:
1. Declaring a function
2. Calling a function

• The function declaration requires a name which is used to
invoke it. The proper syntax is:
function_name () {

command...
}

Linux 14

Functions

• Example: the following function is named display:
display () {

echo "This is a sample function"

}

• The function can be as long as desired and have many
statements. Once defined, the function can be called later as
many times as necessary. We can pass an argument to the
function. The first argument can be referred to as $1, the
second as $2, etc.

Linux 15

Built-in Shell Commands

• Shell scripts are used to execute sequences of commands
and other types of statements. Commands can be divided into
the following categories:
• Compiled applications: binary executable files that you can find on

the filesystem (rm, ls, df, vi, and gzip)
• Built-in bash commands: which can only be used to display the

output within a terminal shell or shell script (cd, pwd, echo, read,
logout, printf, let, and ulimit)

• Other scripts
• A complete list of bash built-in commands can be found in the

bash man page, or by simply typing help.

http://manpages.ubuntu.com/manpages/bionic/man7/bash-builtins.7.html

Linux 16

Built-in Shell Commands

Linux 17

Command Substitution

• If you need to substitute the result of a command as a
portion of another command.,it can be done in two ways:
• By enclosing the inner command with backticks (`)
• By enclosing the inner command in $()

• No matter the method, the innermost command will be
executed in a newly launched shell environment, and the
standard output of the shell will be inserted where the
command substitution was done.

• The $() method allows command nesting. New scripts should
always use this more modern method. For example:
$ cd /lib/modules/$(uname -r)/
The output of the command "uname –r" becomes the argument for the cd command.

Linux 18

Environment Variables

• Almost all scripts use variables containing a value, which can
be used anywhere in the script. These variables can either be
user or system defined. Many applications use such
environment variables for supplying inputs, validation, and
controlling behavior.

• Some examples of standard environment variables are
HOME, PATH, and HOST. When referenced, environment
variables must be prefixed with the $ symbol as in $HOME.
Example: to display the value stored in the PATH variable:
$ echo $PATH

• You can get a list of environment variables with the env, set,
or printenv commands

Linux 19

Exporting Variables

• By default, the variables created within a script are available
only to the subsequent steps of that script. Any child
processes (sub-shells) do not have automatic access to the
values of these variables. To make them available to child
processes, they must be promoted to environment variables
using the export statement as in:
export VAR=value

or
VAR=value ; export VAR

• While child processes are allowed to modify the value of
exported variables, the parent will not see any changes;
exported variables are not shared, but only copied.

Linux 20

Script Parameters

• Users often need to pass parameter values to a script, such
as a filename, date, etc. Scripts will take different paths or
arrive at different values according to the parameters
(command arguments) that are passed to them. These
values can be text or numbers as in:
$./script.sh /tmp
$./script.sh 100 200

Linux 21

Script Parameters

• Within a script, the parameter or an argument is represented
with a $ and a number. The table lists some of these
parameters.

Parameter Meaning
$0 Script name
$1 First parameter
$2, $3, etc. Second, third parameter, etc.
$* All parameters
$# Number of arguments

Linux 22

Using Script Parameters

• The following script (contained in the file named script3.sh) :
#!/bin/bash
echo "The name of this program is: $0"
echo "The first argument is: $1"
echo "The second argument is: $2"
echo "The third argument is: $3"
echo "All arguments passed from cli are : $*"
echo
echo "All done with $0"

Linux 23

Using Script Parameters

• Make the script executable with chmod +x. Run the script
giving it three arguments as in:
$./script3.sh one two three

and the script is processed as follows:
$0 prints the script name: script3.sh
$1 prints the first parameter: one
$2 prints the second parameter: two
$3 prints the third parameter: three
$* prints all parameters: one two three
The final statement becomes: All done with script3.sh

Linux 24

Output Redirection

• Most operating systems accept input from the keyboard and
display the output on the terminal. However, in shell scripting
you can send the output to a file (called output redirection).

• The > character is used to write output to a file. For example,
the following command sends the output of free to the file
/tmp/free.out:
$ free > /tmp/free.out

• To check the contents of the /tmp/free.out file, at the
command prompt type cat /tmp/free.out.

• Two > characters (>>) will append output to a file if it exists,
and act just like > if the file does not already exist.

Linux 25

Input Redirection

• Just as the output can be redirected to a file, the input of a
command can be read from a file. The process of reading
input from a file is called input redirection and uses the <
character. If you create a file called script8.sh with the
following contents:
#!/bin/bash
echo “Line count”
wc -l < /temp/free.out

• and then execute it with
chmod +x script8.sh ; ./script8.sh

it will count the number of lines from the /temp/free.out file
and display the results.

Linux 26

The if Statement

• The actions of if depend on the evaluation of conditions:
• Numerical or string comparisons
• Return value of a command (0 for success)
• File existence or permissions

• In compact form, the syntax of an if statement is:
if TEST-COMMANDS; then CONSEQUENT-COMMANDS; fi

• A more general definition is:
if condition
then

statements
else

statements
fi

Linux 27

Using the if Statement

• The following if statement checks for the /etc/passwd file,
and if the file is found it displays the message
/etc/passwd exists.:
if [-f /etc/passwd]

then

echo "/etc/passwd exists."

fi

• Notice the use of the square brackets ([]) to delineate the
test condition. There are many other kinds of tests you can
perform, such as checking whether two numbers are equal
to, greater than, or less than each other and make a decision
accordingly.

Linux 28

Testing for Files

• bash provides a set of file conditionals, that can used with the
if statement, including:

• You can view the full list of file conditions using the command
man 1 test.

Condition Meaning
-e file Check if the file exists.
-d file Check if the file is a directory.

-f file Check if the file is a regular file (i.e., not a
symbolic link, device node, directory, etc.)

-s file Check if the file is of non-zero size.
-g file Check if the file has sgid set.
-u file Check if the file has suid set.
-r file Check if the file is readable.
-w file Check if the file is writable.
-x file Check if the file is executable.

Linux 29

Example of Testing of Strings

• You can use the if statement to compare strings using the
operator == (two equal signs). The syntax is as follows:
if [string1 == string2] ; then

ACTION

fi

Linux 30

Numerical Tests

• You can use specially defined operators with the if
statement to compare numbers. The various operators that
are available are listed in the table.

• The syntax for comparing numbers is as follows:
exp1 -op exp2

Operator Meaning
-eq Equal to
-ne Not equal to
-gt Greater than
-lt Less than
-ge Greater than or equal to
-le Less than or equal to

Linux 31

String manipulations

• A string variable contains a sequence of text characters. It
can include letters, numbers, symbols and punctuation marks.
Examples: abcde, 123, abcde-123, &acbde=%123

• String operators include those that do comparison, sorting,
and finding the length. Example:

Operator Meaning

[string1 > string2] Compares the sorting order of string1 and
string2.

[string1 == string2] Compares the characters in string1 with the
characters in string2.

myLen1=${#string1} Saves the length of string1 in the variable
myLen1.

Linux 32

Arithmetic Expressions

• Arithmetic expressions can be evaluated in the following three
ways (spaces are important!):

• Using the expr utility: expr is a standard but somewhat
deprecated program. The syntax is as follows:
expr 8 + 8

echo $(expr 8 + 8)

• Using the $((...)) syntax: This is the built-in shell format.
The syntax is as follows:
echo $((x+1))

• Using the built-in shell command let. The syntax is as follows:
let x=(1 + 2); echo $x

Linux 33

Boolean Expressions

• Boolean expressions evaluate to either TRUE or FALSE, and
results are obtained using the various Boolean operators
listed in the table.

Operator Operation Meaning

&& AND The action will be performed only if both the conditions
evaluate to true.

|| OR The action will be performed if any one of the
conditions evaluate to true.

! NOT The action will be performed only if the condition
evaluates to false.

Linux 34

Tests in Boolean Expressions

• Boolean expressions return either TRUE or FALSE. We can
use such expressions when working with multiple data types
including strings or numbers as well as with files. For
example, to check if a file exists, use the following conditional
test:
[-e <filename>]

• Similarly, to check if the value of number1 is greater than the
value of number2, use the following conditional test:
[$number1 -gt $number2]

• The operator -gt returns TRUE if number1 is greater than
number2.

Linux 35

The case Statement

• The case statement is used in scenarios where the actual
value of a variable can lead to different execution paths. case
statements are often used to handle command-line options.

• The advantages of using the case statement are:
• It is easier to read and write.
• It is a good alternative to nested, multi-level if-then-else-fi code

blocks.
• It enables you to compare a variable against several values at once.
• It reduces the complexity of a program.

Linux 36

Structure of the case Statement

• Here is the basic structure of the case statement:
case expression in

pattern1) execute commands;;

pattern2) execute commands;;

pattern3) execute commands;;

pattern4) execute commands;;

*) execute some default commands \

or nothing ;;

esac

Linux 37

case statement example

• Script with the case statement:
#!/bin/bash

prompt user to enter a character

read charac

case "$charac" in

"a"|"A") echo "You have typed a vowel!";;

"a"|"A") echo "You have typed a vowel!";;

"a"|"A") echo "You have typed a vowel!";;

"a"|"A") echo "You have typed a vowel!";;

"a"|"A") echo "You have typed a vowel!";;

*) "You have typed a consonant";;

esac

exit 0

Linux 38

Looping Constructs

• By using looping constructs, you can execute one or more
lines of code repetitively. Usually you do this until a
conditional test returns either true or false as is required.

• Three type of loops are often used in most programming
languages:
• for

• while

• until

• All these loops are easily used for repeating a set of
statements until the exit condition is true.

Linux 39

The 'for' Loop

• The for loop operates on each element of a list of items. The
syntax for the for loop is:
for variable-name in list

do

execute one iteration for each item in
the list until the list is finished

done

• In this case, variable-name and list are substituted by
you as appropriate. As with other looping constructs, the
statements that are repeated should be enclosed by do and
done.

Linux 40

The while Loop

• The while loop repeats a set of statements as long as the
control command returns true. The syntax is:
while condition is true

do

Commands for execution

done

• The set of commands that need to be repeated should be
enclosed between do and done. You can use any command
or operator as the condition. Often it is enclosed within
square brackets ([]).

Linux 41

The until Loop

• The until loop repeats a set of statements as long as the
control command is false. Thus it is essentially the opposite of
the while loop. The syntax is:
until condition is false

do

Commands for execution

done

• Similar to the while loop, the set of commands that need to be
repeated should be enclosed between do and done. You can
use any command or operator as the condition.

Linux 42

Redirecting Errors to File and Screen

• In UNIX/Linux, all programs that run are given three open file
streams when they are started as listed in the table:

• Using redirection we can save the stdout and stderr output
streams to one file or two separate files for later analysis after
a program or command is executed.

File stream Description File
Descriptor

stdin Standard Input, by default the keyboard/terminal for
programs run from the command line 0

stdout Standard output, by default the screen for
programs run from the command line 1

stderr Standard error, where output error messages are
shown or saved 2

Linux 43

Examples

• Practice Linux, bash
• Examples bash

https://personales.unican.es/corcuerp/Linux/slides/Practica_bash.pdf
https://personales.unican.es/corcuerp/Linux/code/bash_examples.zip

Linux 44

Referencias

• Bash scripting cheatsheet
• Bash Reference Manual
• Advanced Bash-Scripting Guide

https://personales.unican.es/corcuerp/Linux/bash/Bash%20scripting%20cheatsheet%20new.html
http://www.gnu.org/software/bash/manual/bash.html
https://www.tldp.org/LDP/abs/html/

	Introducción a la�programación bash - LINUX
	Índice General
	Scripts
	Command Shell choices
	Bash Shell Scripting
	Interactive example using bash Scripts
	Interactive example using bash Scripts
	Return Values
	Viewing Return Values
	Basic Syntax and Special Characters
	Basic Syntax examples
	Basic Syntax examples: Putting Multiple Commands on a Single Line
	Functions
	Functions
	Built-in Shell Commands
	Built-in Shell Commands
	Command Substitution
	Environment Variables
	Exporting Variables
	Script Parameters
	Script Parameters
	Using Script Parameters
	Using Script Parameters
	Output Redirection
	Input Redirection
	The if Statement
	Using the if Statement
	Testing for Files
	Example of Testing of Strings
	Numerical Tests
	String manipulations
	Arithmetic Expressions
	Boolean Expressions
	Tests in Boolean Expressions
	The case Statement
	Structure of the case Statement
	case statement example
	Looping Constructs
	The 'for' Loop
	The while Loop
	The until Loop
	Redirecting Errors to File and Screen
	Examples
	Referencias

